If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4.9t^2+23.2849t+5
We move all terms to the left:
0-(4.9t^2+23.2849t+5)=0
We add all the numbers together, and all the variables
-(4.9t^2+23.2849t+5)=0
We get rid of parentheses
-4.9t^2-23.2849t-5=0
a = -4.9; b = -23.2849; c = -5;
Δ = b2-4ac
Δ = -23.28492-4·(-4.9)·(-5)
Δ = 444.18656801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23.2849)-\sqrt{444.18656801}}{2*-4.9}=\frac{23.2849-\sqrt{444.18656801}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23.2849)+\sqrt{444.18656801}}{2*-4.9}=\frac{23.2849+\sqrt{444.18656801}}{-9.8} $
| 6x+2=-9(x-4) | | 40x+135x=36x | | 5x-2*(2x+1)=3*(x-1) | | -8n+40=-4(3+8n)+4 | | 12y-8y=0 | | 3x+32-7x=2(5x+10) | | 5x-82=100 | | 6.3=2n-4 | | 13=s/3+4 | | 7(2v-3)=-32 | | -5=4.9t^2=23.2849t | | 15=y/3y+6 | | 2/5x-5/8x=26 | | 7g(-5+3)=28 | | 5y-0.14285714285+12=1 | | (x+5)+(x+10)=180 | | -7(6+x)-6=-31-2x | | 4x-2x+2=12 | | 30=9(7z+6) | | 0=4.9t^2+23.2849t | | 3-5n=7-3n | | 8(6-3w)+16=-32 | | -2(-4-3x)=4x+20 | | 4(3x+11=3(16+4x) | | 13+45=w-15 | | -27=9+2(s-6) | | 0,8x=2x | | 6x+24=9× | | 2r+5=r+15 | | 2-6m=3-6m | | 31+4d=9(5d+2) | | 2+5b+6=8+5b |